Conformational analysis. Part 29. ${ }^{1}$ The conformational analysis of 2-substituted fluoro- and trifluoromethyl-benzaldehydes, acetophenones and methyl benzoates by the lanthanide induced shift (LIS) technique

R aymond J. A braham, ${ }^{*, a}$ Simone A ngioloni, ${ }^{\text {b }}$ M ark E dgar ${ }^{\text {a }}$ and Fernando Sancassan*,b
${ }^{\text {a }}$ D epartment of Chemistry, The U niversity of Liverpool, P 0 Box 147, Liverpool, UK L69 3BX
${ }^{\text {b }}$ Institute of Organic C hemistry, U niversity of Genoa, Genoa, Italy

Abstract

An improved LIS technique, using, $\mathbf{Y} \mathbf{b}(f 0 d)_{3}$ to obtain the paramagnetic induced shifts of all the spin $\frac{1}{2}$ nuclei in the molecule, together with complexation shifts obtained by the use of $L u(f o d)_{3}$ has been used to investigate conformational isomerism in 2-fluorobenzaldehyde 1, 2-fluoroacetophenone 2, methyl 2fluorobenzoate 3 and the corresponding 2-trifluoromethyl compounds 4,5 and 6 . The use of fluorine LIS in these molecules was first established by analysis of the LIS in 4-fluorobenzaldehyde 7 and 4-trifluoromethylbenzaldehyde 8 in which conformational isomerism is not possible and confirmed in subsequent analyses. It is shown that ${ }^{19} \mathrm{~F}$ LIS may be used with the same degree of confidence as the corresponding ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ LIS in theses molecules. A nalysis of the LIS data was considered together with ab initio, modelling and solvation calculations to provide a comprehensive account of the conformer geometries and energies for these compounds in a variety of solvents. The 2-fluoro compounds are all planar, with the trans ($\mathbf{C}=\mathbf{0} \cdots \mathrm{F}$) conformer always more stable, in 1 and 2 predominating in all but very polar solvents. In the corresponding 2-trifluoromethyl compounds both the cis and trans conformers of the aldehyde 4 are planar with the trans form predominating, but the ketone 5 is essentially in one orthogonal conformation and the ester 6 interconverting between two nonplanar conformations with the trans conformer predominant.

Introduction

Previous investigations in this series have demonstrated the importance and the utility of the LIS method in determining the structures and conformations of a variety of molecules in solution ${ }^{2-7}$ and the essential conditions necessary for successful LIS studies have been given. A mongst these are the determination of only one or two molecular parameters (e.g. a torsional angle or conformer ratio) and both the quality and the comprehensiveness of the experimental data. In particular, the diamagnetic complexation shift ($\Delta \mathrm{D}$) must be subtracted from the experimental paramagnetic shifts (ΔM) to obtain the required pseudo-contact shift ($\Delta \mathrm{M}-\Delta \mathrm{D}$). Very recently it has been shown that diamagnetic complexation shifts measured using $\mathrm{Lu}(\mathrm{fod})_{3}$ gave consistently better results when used with the paramagnetic shifts obtained with $\mathrm{Yb}(\mathrm{fod})_{3}$ than the more common $\mathrm{La}(\mathrm{fod})_{3}$ reagent. ${ }^{2,3}$ This is probably due to the greater similarity of $Y b$ vs. $L u$ as compared to $Y b$ vs. La.
This technique thus provides a means of obtaining accurate and comprehensive LIS data and it has been used recently to determine the conformer ratios in substituted acetophenones and acetylnaphthalene and also to directly test the molecular geometries, either calculated or experimental, for benzaldehyde, acetophenone, methyl benzoate and their 2,6-dimethyl and 2,6difluoro derivatives. ${ }^{2,3}$ It was found that the calculated (ab initio or molecular mechanics) geometries did not reproduce the experimental data for the 2,6-difluoro compounds, probably due to the difficulty of accurately reproducing the $\mathrm{F} \cdots \mathrm{O}$ interactions in these compounds. Thus, it was of some interest to determine whether this improved LIS technique could be applied to the determination of the molecular geometries and conformer energies of similar fluorinated compounds with more than one possible conformation in solution and here we apply this method to the investigation of the conformational
analysis of some 2-fluoro and 2-trifluoromethyl substituted benzaldehydes, acetophenones and methyl benzoates. These molecules can exist in the O -cis and O -trans forms (Scheme 1)

Scheme 1 Conformational isomers in 2-substituted aromatic carbonyl compounds, $X=F, \mathrm{CF}_{3} ; \mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{OM} \mathrm{e}$
and the relative energy of the two forms is a sensitive measure of the $F \cdots O=C$ and $F \cdots R$ interactions. F urthermore, as the interactions of the fluorine substituent are of a major significance in the conformational analysis and the fluorine nucleus is also an excellent N M R-active nucleus it was also of interest to determine whether the ${ }^{19}$ F LIS could be used with the same degree of certainty in the analysis as the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ LIS.
The conformations of fluoro and trifluoromethyl substituted acetophenones, benzaldehydes and benzoates have been the subject of numerous investigations. ${ }^{9-17}$ The conformational preference of 2-fluorobenzaldehyde was investigated using the observed dipole moment to estimate the conformational equilibrium via calculated dipole moments of the individual cis and trans forms from IN DO calculations ${ }^{10}$ to give 73% of the trans conformer in benzene solution. However, the dipole moment in CCl_{4} solution has been interpreted as evidence for the trans form to be exclusively favoured. ${ }^{13}$ Schaefer and Wasylishen., ${ }^{9,12}$ used the stereospecific ${ }^{5}{ }_{\mathrm{HH}}$ coupling between the aldehyde proton and the aromatic H 5 proton to determine the percent of the cis and trans forms in $\mathrm{CS}_{2}-\mathrm{C}_{6} \mathrm{D}_{12}$ and acetone solvents as 96 and 86% trans corresponding to free energy differences of 1.82

Table 1 C-F couplings (Hz) in fluoro and trifluoromethyl aromatic carbonyl compounds

Compound	$\mathrm{C}=0$	C-1	C-2	C-3	C-4	C-5	C-6	CH_{3}	CF_{3}
1	6.7	8.0	256.6	20.5	9.1	3.7	1.9	-	-
2	3.5	12.7	254.8	23.8	8.5	3.4	2.5	7.0	-
3	3.7	10.1	259.8	22.5	9.0	4.2	1.2	-	-
4	2.7	1.5	32.5	5.5	a	1.1	a	-	274.4
5	a	2.0	32.4	5.1	a	1.0	a	a	272.1
6	a	2.1	32.4	5.5	a	1.0	a	a	273.1
7	a	2.5	9.7	22.3	256.7	22.34	9.7	-	-
8	a	a	a	3.8	32.7	3.8	a	-	272.9

${ }^{\text {a }}$ The coupling is less than the digital resolution $(0.35 \mathrm{~Hz})$.
Table 2 Observed carbon, proton and fluorine chemical shifts (δ), LIS values ($\Delta \mathrm{M}$), diamagnetic shifts ($\Delta \mathrm{D}$) and pseudo-contact shifts $\Delta \mathrm{M}$ (PC) for the 4-substituted compounds

4-F luorobenzaldehyde 7

	C-1	C-2,-6	C-3,-5	C-4	$\mathrm{C}=0$	H-2,-6	H-3,-5	F	Ald.
Shift	132.99	132.26	116.37	166.54	190.56	7.92	7.22	59.38	9.98
$\Delta \mathrm{M}$ a	47.08	31.55	15.63	14.05	135.42	30.40	10.10	12.03	72.62
$\Delta D^{\text {b }}$	-1.42	2.22	0.72	1.77	7.23	-0.06	-0.07	5.05	-0.20
$\Delta \mathrm{M}(\mathrm{PC})$	48.50	29.33	14.91	12.28	128.19	30.40	10.10	6.98	72.82

4-Trifluoromethylbenzaldehyde 8

	C-1	C-2,-6	C-3,-5	C4	$\mathrm{C}=0$	CF_{3}	H-2,-6	H-3,-5	CF_{3}	Ald.
Shift	138.76	129.96	126.17	135.69	191.07	123.50	8.01	7.81	98.61	10.11
$\Delta M^{\text {c }}$	50.81	33.65	16.72	15.32	149.20	7.54	32.21	10.89	6.09	81.47
$\Delta \mathrm{D}^{\text {d }}$	-1.21	1.57	0.49	1.87	7.26	-0.07	-0.01	-0.05	-0.31	-0.11
$\Delta \mathrm{M}$ (PC)	52.02	32.08	16.23	13.44	141.94	7.54	32.21	10.89	6.40	81.58
Intercept	138.71	129.93	126.16	135.67	190.90	123.50	7.98	7.80	98.61	10.02

${ }^{\text {a }} \mathrm{Y}$ b(fod) $)_{3} . \mathrm{S}_{0} 0.41 \mathrm{~mm} . \rho \times 10^{-2} 2.47,4.11,5.60$, corr. coef. >0.9988. ${ }^{\mathrm{b}} \mathrm{Lu}(\mathrm{fod})_{3} \mathrm{~S}_{0} 0.37 \mathrm{~mm} . \rho \times 10^{-2} 2.73,4.46,6.29$, corr. coef. >0.9993. ${ }^{\mathrm{c}} \mathrm{Yb}(\mathrm{fod})_{3} \mathrm{~S}_{0}$ $0.27 \mathrm{~mm} . \rho \times 10^{-2} 2.05,4.33,6.18$, corr. coef. >0.9999. ${ }^{d} \mathrm{La}(\mathrm{fod})_{3} \mathrm{~S}_{0} 0.33 \mathrm{~mm} . \rho \times 10^{-2} 1.40,3.31,4.97$ corr. coef. >0.995.
and $1.08 \mathrm{kcal} \mathrm{mol}^{-1}(1 \mathrm{cal}=4.184 \mathrm{~J})$ respectively. Extrapolation of the liquid phase data gave an estimate of the vapour phase energy difference as $2.75 \mathrm{kcal} \mathrm{mol}^{-1}$ in favour of the trans form in good agreement with the theoretical value of $2.20 \mathrm{kcal} \mathrm{mol}^{-1}$.

In 2-fluoroacetophenone the observed dipole moment in CCI_{4} and benzene solution was interpreted as arising from ca. 90% 0-trans form from INDO calculations ${ }^{14}$ (see below), whereas that of 2-trifluoromethylacetophenone was interpreted on the basis of one orthogonal conformation with a $90^{\circ} \mathrm{CO}-$ ring dihedral angle. These conclusions were supported by N M R evidence, particularly from the ${ }^{5} \mathbf{C H}_{3}-\mathbf{F}$ coupling. This 'through space' coupling in 2-fluoroacetophenone is only possible in the trans conformer. In CCl_{4} deuteriotoluene and acetone the coupling is $5.2,4.8$ and 4.5 Hz and this decrease was interpreted as due to an increase in the population of the more polar cis conformer with increasing solvent polarity. ${ }^{15-17}$ This coupling is only 0.4 Hz in 2-trifluoromethylacetophenone ${ }^{14}$ which is consistent with the proposed orthogonal conformation.

Experimental

All samples were obtained commercially (A ldrich and Fluorochem), except the methyl 2-fluoro and 2-trifluoromethyl benzoates which were prepared from the corresponding acids by standard procedures. ${ }^{18}$ The aldehydes needed to be distilled prior to use, the others were used directly for the LIS experiments. The solutions were made up as 0.5 m in deuteriochloroform which had been stored for at least 24 h over molecular sieves prior to use. The shift reagent Y b(fod) $)_{3}$ is available commercially and $\mathrm{Lu}(\mathrm{fod})_{3}$ was prepared following Springer et al. ${ }^{19}$ The shift reagents were dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$ at ca. $35^{\circ} \mathrm{C}$ for 24 h , and maintained in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$ between successive additions to the sample. Three additions of shift reagent (ca. $15-20 \mathrm{mg}$) were weighed directly in the N M R tube. The plots of chemical shifts vs. ρ, the ligand/substrate ratio, were checked for
linearity (all correlation coefficients >0.999) and for the intercept at the origin (a good test for any impurities). The diamagnetic shifts ($\Delta \mathrm{D}$) were obtained from identical experiments using $\mathrm{Lu}(\mathrm{fod})_{3}$. In 4-fluorobenzaldehyde, where the correlation coefficient was <0.999 due to impurities scavenging the shift reagent preferentially to the sample, the first data point was excluded giving three data points (the three additions of shift reagent) to achieve the required linearity. In this case the extrapolated intercept is not at δ_{0} and is not given in Table 2.

For compounds 1, 2, 4 and 5 the LIS measurements were recorded on a Varian Gemini 200 M H z spectrometer operating on ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ at $22^{\circ} \mathrm{C}$. Digital resolution was better than 0.09 Hz for the proton spectra and 0.36 Hz for the carbon spectra; a 4 s pulse delay was used for the accumulation of the carbon spectra. The fluorine LIS values were recorded in a separate experiment on a Bruker AMX-400 spectrometer involving ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ measurements. The fluorine shifts were then normalised to the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ LIS obtained previously. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ LIS values for the other compounds were obtained directly on the Bruker AMX-400. Typical proton spectral widths were 600 Hz with 128 K transform, carbon spectral widths were typically 23000 Hz with 128 K transform using a line broadening of 2.0 Hz , fluorine spectral widths were 37000 Hz with 256 K transform.

Spectral assignments

The spectral assignments, were straightforward utilising previous literature assignments, ${ }^{9,19,20}$ additive substituent chemical shifts, ${ }^{21}$ the size of the $\Delta \mathrm{M}$ values obtained and for the ${ }^{13} \mathrm{C}$ assignments the $\mathrm{C}-\mathrm{F}$ couplings which have characteristic values of ca. 250, 20-25, ca. 10 and $<5 \mathrm{~Hz}$ for the one, two, three and four bond couplings. ${ }^{22}$ The observed couplings are given in Table 1 and it can be seen that the ring fluorines couple with all the ring carbon atoms and the CF_{3} fluorines mainly to the α - and β-carbons as expected and occasionally to the carbonyl carbon.

Table 3 Carbon, proton and fluorine chemical shifts (δ), LIS values (ΔM), diamagnetic shifts (ΔD), and pseudo-contact shifts ΔM (PC) for the 2-fluoro substituted compounds

2-F luorobenzaldehyde 1								
	C-1	C-2	C-3	C-4	C-5	C-6	$\mathrm{C}=0$	
Shift	124.21	164.73	116.53	136.36	124.66	128.71	187.17	
$\Delta M^{\text {a }}$	62.79	34.26	18.86	19.48	22.49	47.55	179.13	
$\Delta D^{\text {b }}$	-0.76	1.86	0.60	2.82	0.62	1.43	9.05	
$\Delta \mathrm{M}$ (PC)	63.55	32.40	18.26	16.66	21.87	46.12	170.08	
Intercept	124.00	164.62	116.47	136.29	124.59	128.56	186.56	
	H-3	H-4	H-5	H-6	Ald.	F		
Shift	7.184	7.621	7.280	7.887	10.386	52.37		
$\Delta \mathrm{M}$	12.54	10.91	14.88	53.27	98.05	29.99		
$\Delta \mathrm{D}$	0.07	0.14	0.06	0.18	0.42	3.29		
$\Delta \mathrm{M}$ (PC)	12.47	10.77	14.82	53.09	97.63	26.70		
Intercept	7.139	7.582	7.229	7.707	10.03			
2-F luoroacetophenone 2								
	C-1	C-2	C-3	C-4	C-5	C-6	$\mathrm{C}=0$	CH_{3}
Shift	125.73	162.27	116.66	134.68	124.38	130.61	195.88	31.45
$\Delta \mathrm{M}{ }^{\text {c }}$	65.72	33.44	18.10	17.21	19.43	49.28	161.78	68.63
$\Delta D^{\text {d }}$	-1.16	1.69	0.46	2.96	0.57	1.79	9.99	-0.11
$\Delta \mathrm{M}$ (PC)	66.88	31.75	17.64	14.25	18.86	47.49	151.79	68.74
Intercept	125.68	162.24	116.65	134.67	124.36	130.57	195.77	31.41
	H-3	H-4	H-5			CH_{3}	F	
Shift	7.104	7.521	7.199		79	2.647	52.37	
$\Delta \mathrm{M}$	12.42	8.67	10.10			44.60	23.19	
$\Delta \mathrm{D}$	0.05	0.12	0.03			0.30	3.31	
$\Delta \mathrm{M}$ (PC)	12.37	8.55	10.07			44.30	19.88	
Intercept	7.117	7.520	7.184		38	2.617	-	
M ethyl 2-fluorobenzoate 3								
	C-1	C-2	C-3	C-4	C-5	C-6	$\mathrm{C}=0$	CH_{3}
Shift	118.68	161.98	117.01	134.53	124.00	132.18	164.96	52.35
$\Delta \mathrm{M}{ }^{\text {e }}$	43.14	23.61	10.47	8.69	9.23	26.56	100.76	34.82
$\Delta \mathrm{D}^{\mathrm{f}}$	-1.55	0.78	0.18	1.78	0.44	1.34	5.04	2.47
$\Delta \mathrm{M}$ (PC)	44.70	22.82	10.29	6.82	8.79	25.26	95.72	32.35
Intercept	118.68	161.98	117.01	134.53	124.00	132.18	164.95	52.35
	H-3	H-4	H-5	H-6	CH_{3}	F		
Shift	7.131	7.513	7.198	7.936	3.931	52.29		
$\Delta \mathrm{M}$	6.29	3.85	3.07	27.43	24.93	23.82		
$\Delta \mathrm{D}$	-0.05	0.03	-0.05	0.15	0.13	2.89		
$\Delta \mathrm{M}$ (PC)	6.34	3.83	3.12	27.28	24.80	20.93		
Intercept	7.099	7.481	7.168	7.891	3.903	52.28		

${ }^{\text {a }} \mathrm{Y} \mathrm{b}(\text { fod })_{3} . \mathrm{S}_{0} 0.32 \mathrm{~mm} . \rho \times 10^{-2} 4.09,8.93,15.20$, corr. coef. >0.9986. F corr. coef. 0.994 . ${ }^{\mathrm{b}} \mathrm{Lu}(\text { fod })_{3} . \mathrm{S}_{0} 0.40 \mathrm{~mm} . \rho \times 10^{-2} 1.88$, 3.70, 5.17, corr. coef. >0.975. F corr. coef. $0.970 .^{\mathrm{c}} \mathrm{Y}$ b(fod) $)_{3} . \mathrm{S}_{0} 0.35 \mathrm{~mm} . \rho \times 10^{-2} 1.30,2.99,4.41$, corr. coef. >0.9995. F corr. coef. 0.9996 . ${ }^{\text {d }} \mathrm{Lu}$ (fod) $)_{3} . \mathrm{S}_{0} 0.35 \mathrm{~mm} . \rho \times 10^{-2}$ $1.69,2.96,4.37$, corr. coef. >0.997; F corr. coef. $0.9999 .^{e} Y$ b(fod) $)_{3} . S_{0} 0.46 \mathrm{~mm} . \rho \times 10^{-2} 5.58,9.48,13.75$; corr. coef. >0.999. ${ }^{\mathrm{f}} \mathrm{Lu}(\mathrm{fod})_{3} . \mathrm{S}_{0} 0.41 \mathrm{~mm}$. $\rho \times 10^{-2} 5.79,13.76,17.04$, corr. coef. >0.993.

Full details of all the spectral assignments are given elsewhere. ${ }^{18,23}$ The observed chemical shifts (δ), diamagnetic shifts ($\Delta \mathrm{D}$), LIS values ($\Delta \mathrm{M}$) and pseudo-contact shifts $[\Delta M(P C)=\Delta M-\Delta D]$ are given in Tables 2-4 for the compounds measured here.

Results

The LIS data in Tables 2-4 may now be used to investigate the conformational equilibria in these compounds. It is important to restate the caveat mentioned earlier, that due to the small number of LIS values, only one or two unknowns can be investigated in any given system. Here, we will attempt to determine the conformational equilibrium, i.e. the populations of the cis and trans forms (Scheme 1) and also one key geometric parameter, the CO-ring torsional angle which of course may differ in the cis and trans conformers. This torsional angle in the comparable 2,6-difluoro compounds was shown to be
very different from that calculated by either molecular mechanics or ab initio calculations ${ }^{2}$ and the solution of the LIS analysis is very dependent on this angle The remainder of the molecular geometries will be taken from the standard experimental data given in ref. 2 and the ab initio geometries are from GAUSSIAN 92 (94$)^{24}$ with the recommended 6-31G (6-31G*) ${ }^{25}$ basis set. Full details of all these geometries are given in refs. 18 and 23. The analysis of the observed LIS was carried out using the LIRA S3 program incorporating the two-site or four-site complexation model. N ote that these are identical for a planar substrate geometry. These have been fully described in previous parts of this series. ${ }^{2-7}$ F ollowing ref. 2 we may regard any solution (observed minus calculated shifts) with an agreement factor (A F) $<1.0 \%$ (i.e. 0.01) and with all calculated LIS within 1.0 ppm of the observed shifts as a fully acceptable solution.

Fluorine pseudo-contact shifts

It is necessary first to determine whether the ${ }^{19} \mathrm{~F}$ LIS may be

Table 4 Carbon, proton and fluorine chemical shifts (δ), LIS values (ΔM), diamagnetic shifts (ΔD), and pseudo-contact shifts ΔM (PC) for the 2-trifluoromethyl substituted compounds

2-Trifluoromethylbenzaldehyde 4

	C-1	C-2	C-3	C-4	C-5	C-6	$\mathrm{C}=0$	CF_{3}
Shift	133.78	131.09	126.14	133.65	132.37	129.12	188.98	123.78
$\Delta M^{\text {a }}$	35.21	19.31	10.82	10.79	12.77	28.68	98.46	12.73
$\Delta D^{\text {b }}$	-1.23	1.37	0.28	1.75	0.13	1.53	5.64	-0.22
$\Delta \mathrm{M}$ (PC)	36.44	17.94	10.54	9.04	12.64	27.15	92.82	12.95
Intercept	133.71	131.05	126.12	133.63	132.35	129.07	188.80	123.76
	H-3	H-4	H-5	H-6	Ald.	F		
Shift	7.797	7.719	7.720	8.137	10.41	106.17		
$\Delta \mathrm{M}$	6.97	5.93	8.00	33.10	54.39	9.89		
$\Delta \mathrm{D}$	-0.01	-	-	0.06	-0.13	0.07		
$\Delta \mathrm{M}$ (PC)	6.97	5.93	8.00	33.10	54.52	9.82		
Intercept	7.79	7.71	7.71	8.08	10.31	-		

2-Trifluoromethylacetophenone 5

	C-1	C-2	C-3	C-4	C-5	C-6	$\mathrm{C}=0$	CH_{3}	CF_{3}
Shift	140.50	126.80	126.71	130.18	131.94	127.09	201.90	30.60	123.69
$\Delta M^{\text {c }}$	45.44	28.40	14.56	12.09	13.33	29.42	114.45	47.18	23.57
$\Delta D^{\text {d }}$	-1.54	1.07	0.34	1.87	0.44	1.72	10.52	0.19	0.08
$\Delta \mathrm{M}$ (PC)	46.97	27.33	14.23	10.22	12.89	27.70	103.93	46.99	23.49
Intercept	140.47	126.79	126.70	130.18	131.94	127.08	201.85	30.58	123.68

	H-3	H-4	H-5	H-6	CH_{3}	F			
Shift	7.711	7.577	7.588	7.466	2.578	103.65			
$\Delta \mathrm{M}$	9.73	6.54	7.18	27.45	29.88	20.39			
$\Delta \mathrm{D}$	0.01	0.05	0.00	0.14	0.26	1.24			
$\Delta \mathrm{M}$ (PC)	9.73	6.50	7.18	27.31	29.61	19.15			
Intercept	7.709	7.565	7.596	7.454	2.567	103.59			
M ethyl 2-trifluoromethylbenzoate 6									
	C-1	C-2	C-3	C-4	C-5	C-6	$\mathrm{C}=0$	CH_{3}	CF_{3}
Shift	131.19	128.89	126.75	131.24	131.79	130.24	167.36	52.85	123.45
$\Delta \mathrm{Me}$	48.25	24.92	11.08	8.98	9.42	30.16	112.05	37.90	19.88
$\Delta D^{\text {f }}$	-1.58	0.81	0.29	1.25	0.30	1.37	4.15	2.11	0.10
$\Delta \mathrm{M}$ (PC)	49.83	24.11	10.79	7.73	9.12	28.79	107.90	35.79	19.78
Intercept	131.15	128.88	126.76	131.23	131.78	130.21	167.17	52.78	123.44

	$\mathrm{H}-3$	$\mathrm{H}-4$	$\mathrm{H}-5$	$\mathrm{H}-6$	$\mathrm{CH}_{\mathbf{3}}$	F
Shift	7.741	7.609	7.586	7.779	3.933	102.16
$\Delta \mathrm{M}$	7.74	3.96	2.10	28.93	26.94	17.07
$\Delta \mathrm{D}$	0.0	0.0	0.0	0.17	0.10	0.46
$\Delta \mathrm{M}$ (PC)	7.74	7.73	2.11	28.76	26.84	16.61
Intercept	7.727	7.593	7.587	7.733	3.889	102.17

${ }^{\mathrm{a}} \mathrm{Y}$ b(fod) $)_{3} \mathrm{~S}_{0} 0.50 \mathrm{~mm} . \rho \times 10^{-2} 2.02,4.56,6.90$, corr. coef. >0.9994. F corr. coef. 0.995 . ${ }^{\mathrm{b}} \mathrm{Lu}(\mathrm{fod})_{3} . \mathrm{S}_{0} 0.50 \mathrm{~mm} . \rho \times 10^{-2} 1.87,5.63$, 8.89 corr. coef. >0.9956. F corr. coef. 0.915 . $^{\mathrm{c}} \mathrm{Y}$ b(fod) ${ }_{3} . \mathrm{S}_{0} 0.41 \mathrm{~mm} . \rho \times 10^{-2} 1.65,5.48,7.38$, corr. coef. >0.9994. F corr. coef. 0.9993 . d Lu (fod) $)_{\text {. }} \mathrm{S}_{0} 0.43 \mathrm{~mm} . \rho \times 10^{-2}$ $1.76,4.14,6.22$, corr. coef. >0.999, F corr. coef. 0.9991 . e Y b(fod) $)_{3} S_{0} \mathrm{~mm} . \rho \times 10^{-2} 3.76,8.60,16.58$, corr. coef. >0.999. ${ }^{\mathrm{f}} \mathrm{Lu}$ (fod) $)_{3} \mathrm{~S}_{0} 0.50 \mathrm{~mm}$. $\rho \times 10^{-2} 8.47,12.38,16.30$, corr. coef. >0.989.
used in this analysis. For this to be achieved the observed LIS must be solely due to the pseudo-contact term with no appreciable contact term (the ${ }^{19} \mathrm{~F}$ diamagnetic shifts are appreciable but these are already removed by thelutetium experiment). This can be investigated from the results for the 4 -fluoro- and 4 -trifluoromethyl-benzaldehyde (Table 2), in which there is no conformational equilibrium and the molecules are completely planar.

4-Fluorobenzaldehyde

The LIRA S3 analysis of the LIS for this molecule using either the experimental geometry with a standard benzene ring or the $6-31 \mathrm{G}$ * geometry gave excellent AF values of 0.45 and 0.39 respectively including the fluorine shift. The good agreement for both cases is of interest, as the geometry of the benzene ring is somewhat different in the two geometries. The GAUSSIA N geometry has a ring angle at C-4 of 122.7°, in agreement with that derived from the crystal structures of para-disubstituted
benzenes, ${ }^{26}$ whereas the experimental geometry has a standard benzenering ($\mathrm{C}-\mathrm{C} 1.397 \AA$, $\mathrm{C}-\mathrm{H} 1.085 \AA$, all angles 120°). The AF is unchanged if thefluorine atom is removed confirming that there is no appreciable contact shift at the para fluorine atom.

4-T rifluoromethylbenzaldehyde

Precisely the same pattern was observed in the analysis of the LIS in this molecule. The experimental geometry incorporating for the F_{3} group CC and CF bond lengths of 1.504 and $1.345 \AA$, respectively, and CCF angles of $111.9^{\circ 27}$ and the GAUSSIAN geometry again both gave excellent agreement factors of 0.61 and 0.56 , respectively, indicating the absence of a contact contribution on the fluorine atoms. Further supporting evidence comes from the similarity of the $\Delta \mathrm{M}$ (PC) for the fluorine atoms (6.40 ppm) and those of the methyl hydrogen atoms in 4 methylbenzaldehyde (6.61). ${ }^{2}$ Thus, we may safely conclude that the fluorine atoms in the para fluorine and trifluoromethyl groups experience no significant contact contribution. The cor-
responding fluorine atoms in the ortho position are of course much closer to the site of complexation, but we will show that these fluorine LIS may also be treated in a similar fashion and that their contact contributions are minimal.

2-F luorobenzaldehyde 1

In the case of the 2-fluoro compounds there is no evidence to suggest that the heavy atom skeleton is not planar in either conformer, thus the only unknown quantity in the LIS analysis is the population of the cis and trans forms. We note immediately that for $\mathbf{1}$ the C-6 pseudo-contact shift is much greater than that of C-2 indicating a preference for the planar trans conformation. This was confirmed by the LIRAS analysis. U sing the standard geometry ${ }^{2}$ the analysis converges at 85% trans form with an AF of 1.02. Excluding the fluorine LIS gives 88% trans form with a somewhat better AF of 0.81 . U sing the 6 31G optimised geometry gives virtually identical results of 83% trans with AF 1.17 (incl. F) and 85\% trans and AF 0.88 (excl. F). Thus the LIS analysis gives $85(\pm 2) \%$ trans form in CDCl_{3} solution which corresponds to an energy difference of 1.0 kcal mol^{-1} in favour of the trans form.

2-F luoroacetophenone 2

We note that again the size of the C-2 and C-6 pseudo-contact shifts are very similar to that in $\mathbf{1}$ again indicating a preference for the 0 -trans conformer and this is again confirmed by the LIRAS analysis. The analysis using the standard geometry ${ }^{2}$ gives 100% trans and an A F of 0.95 (incl. F) and 97% trans with an AF 0.71% (excl. F). The $6-31 \mathrm{G}$ geometry gives rather poorer AF s of 1.34 for 95% trans (incl. F) and 1.14 for 95% trans (excl. F). The A F values are significantly better with the experimental geometry and we conclude that the LIS analysis gives essentially all trans form with only $1-2 \%$ of the cis form present in chloroform solution.

M ethyl 2-fluorobenzoate 3

The LIS data for this molecule in which the ΔM (PC) values for C-2 and C-6 are quite similar suggests that the populations of the two forms will be much more equal in this molecule and this is confirmed by the LIRAS analysis. U sing the standard geometry with the C-O-C angle of 120° gives the best AF of 1.54 for 70% of the trans conformer (incl. F) and exactly the same populations and AF (excl. F). A gain the 6-31G geometry gives a significantly poorer AF of 2.83 for 50% trans (incl. F) and 1.92 for 63% trans (excl. F). An optimised 6-31G* geometry was also used, but this gave even worse AF (ca. 2.9) than either of the above geometries. The LIRAS analysis indicates that this molecule exists as $65-70 \%$ of the trans conformer, corresponding to an energy difference of $0.45(\pm 0.05) \mathrm{kcal} \mathrm{mol}^{-1}$ in favour of the trans form. The alternative possibility of one nearly orthogonal conformation gives an unacceptable AF (>4.0) and also is not consistent with the calculated geometries which all minimise to planar conformations.

2-T rifluoromethylbenzaldehyde 4

The bulky 2-trifluoromethyl substituent may induce the carbonyl group to adopt a non-planar conformation. H owever, in this compound there is no evidence to support a non-planar conformation and this is confirmed by the analysis of the LIS data. The pseudo-contact shift of C-6 is much greater than that of C-2 suggesting a preference for the trans conformer and this was the starting point for the LIS analysis. U sing the standard geometry a good AF of 1.14 was given for 100% trans conformer, including F. Including the cis conformer gave a slightly lower AF of 1.00 for 96% trans form, again including F. The ab initio geometry gave similar results with an AF of 1.33 for 100% trans form and a significantly better AF of 0.74 for 88% trans form. In conclusion the LIS data for this compound is fully interpreted on the basis of two planar conformers, with the trans form ca. 90% populated giving an energy difference of ca. $1.3 \mathrm{kcal} \mathrm{mol}^{-1}$.

2-T rifluoromethylacetophenone 5

Thepseudo-contact shifts of the 2,6 and 3,5 carbonsand protons aresimilar and this could bedue to either an almost orthogonal conformation of the acetyl group or two almost equally populated conformers. Thus, the LIS analysis considered both models. When the planar cis or planar trans geometries were input to the LIRAS3 program no acceptable solution was obtained and this was also the case for any proportion of these two geometries. This suggests that both the conformers for this molecule have a non-planar skeleton. Thus in this compound both the two acetyl-ring dihedral angles and the populations of the two conformers need to be obtained from the LIS data.
As previously, the standard geometry model was first used. The first model attempted was that of one conformer, which gave an AF of 2.66 for the trans conformer with an acetylring torsional angle of 80° and this was reduced to an almost acceptable AF of 1.69 by small changes in the bond angles, particularly the $\mathrm{Me}-\mathrm{C}=\mathrm{O}$ and $\mathrm{H}-\mathrm{C}-\mathrm{C}=\mathrm{O}$ angles to 126 and 112°, respectively. These are not unreasonable changes considering the steric interactions in this molecule, but the question remains as to whether this solution is definitive or merely due to the averaging of the LIS of two less orthogonal conformations. Thus the two conformer model was attempted again using the standard geometry and varying both dihedral angles and the conformer populations. A global minimum was obtained with 50:50 populations of the trans and cis conformers, the trans conformer with an acetyl-ring dihedral angle of 25° and the cis with one of 45°. A gain small changes to the $\mathrm{H}-\mathrm{C}-\mathrm{C}=\mathrm{O}$ angles in both conformers to 112° and to the $\mathrm{C}-1 \mathrm{C}=0$ angle in the trans form (118°) reduced the AF to 1.50 . Similar, but poorer, results were obtained using the ab initio geometry. The one conformer model, varying the acetyl-ring dihedral angle for the best solution gave a poor AF of 2.08 for an 85° dihedral angle. The two conformer model optimising the acetyl to ring dihedral angles and conformer populations also gave an identical AF for a $75: 25$ cis: trans ratio with acetyl-ring dihedral angles of 15° (trans) and 50° (cis).
In conclusion the LIS analysis gives barely acceptable solutions for either the one-conformer model in which the optimum solution is for an essentially orthogonal conformer, or for the two-conformer model in which the optimum AF occurs for approximately equal populations of the two conformers. The standard and ab initio geometries give similar solutions but the ab initio geometry gives poorer AF values for both models. In view of the small difference between the AF values for both models neither of which gives a fully acceptable AF, the LIS data cannot unambiguously differentiate between these two models and other factors need to be considered to decide between them (see below).

M ethyl 2-trifluoromethylbenzoate 6

The pseudo-contact shifts of the 2,6 and 3,5 carbons and protons in this molecule are much less similar than those for the corresponding trifluoromethylacetophenone (Table 4) and this suggests that the compound exists either as one twisted but not orthogonal conformer or two interconverting conformers and again both models were considered. U sing the standard geometry neither of the planar conformers gave an acceptable solution, but varying the ring to carbonyl dihedral angle gave a good AF of 0.91 for the trans conformer with a dihedral angle of 45°. The two-conformer model was then attempted initially varying only the populations of the two planar conformers and this did not give an acceptable A F. Varying both the proportions of the conformers and their dihedral angles gave a global minimum with an even better AF of 0.84 for 96% of the trans form with ester-ring torsional angles of 45° (trans) and 20° (cis). Fully acceptable AF values were also obtained for up to 10% of the cis form with torsional angles of $35-40^{\circ}$ (trans) and $20-40^{\circ}$ (cis).

Table 5 Observed and calculated pseudo-contact shifts for the 2-substituted compounds 1-6

	$\begin{aligned} & \mathbf{1} \\ & \mathrm{Obs} . \end{aligned}$	Calc. ${ }^{\text {a }}$	$\begin{aligned} & \mathbf{2} \\ & \text { Obs. } \end{aligned}$	Calc. ${ }^{\text {b }}$	$\begin{aligned} & \mathbf{3} \\ & \mathrm{Obs} . \end{aligned}$	Calc. ${ }^{\text {c }}$	$\begin{aligned} & \mathbf{4} \\ & \text { Obs. } \end{aligned}$	Calc. ${ }^{\text {d }}$	$\begin{aligned} & \mathbf{5} \\ & \text { Obs. } \end{aligned}$	Calc. ${ }^{\text {e }}$	6 Obs.	Calc. ${ }^{\text {f }}$
CO	170.1	169.8	151.8	152.1	95.7	95.8	92.8	92.6	103.9	104.2	107.9	107.8
C-1	63.8	65.3	66.9	65.6	44.7	43.5	36.4	37.3	47.0	46.9	49.8	49.3
C-2	32.4	33.1	31.8	31.4	22.8	23.1	17.9	18.0	27.3	26.8	24.1	24.4
C-3	18.3	18.3	17.6	17.6	10.3	10.1	10.5	10.2	14.2	13.4	10.8	11.4
C-4	16.7	16.3	14.3	14.6	6.8	7.4	9.0	9.1	10.2	10.5	7.7	7.5
C-5	21.9	22.2	18.9	18.5	8.8	9.0	12.6	12.6	12.9	13.4	9.1	9.0
C-6	46.1	45.7	47.5	45.6	25.3	26.1	27.1	27.4	27.7	27.6	28.8	28.9
CH_{3}	-	-	68.7	69.0	32.3	32.9	-	-	47.0	46.9	35.8	36.3
CF_{3}	-	-	-	-	-	-	12.9	12.8	23.5	22.8	19.9	19.8
H-3	12.5	12.0	12.4	11.9	6.3	5.5	7.0	6.7	9.7	8.8	7.7	7.3
H-4	10.8	10.7	10.8	8.6	3.8	3.9	5.9	5.8	6.5	6.6	4.0	3.7
H-5	14.9	15.6	10.1	9.6	3.1	2.9	8.0	8.5	7.2	8.7	2.1	2.2
H-6	53.1	52.2	57.1	57.2	27.3	27.4	33.1	32.7	27.3	26.5	28.9	28.9
CHO	97.6	97.5	-	-	-	-	54.5	54.5	-	-	-	-
CH_{3}		-	44.3	44.4	24.8	24.7	-	-	29.6	30.5	26.9	27.0
F	26.7	26.1	23.0	24.0	20.9	20.7	9.8	9.6	19.1	19.4	16.6	16.7

${ }^{\text {a }}$ Standard geom. 85% trans, AF 1.00%, r $2.63 \AA, \varphi 60^{\circ}, \psi 132^{\circ}$, Pop 100%. ${ }^{\text {b }}$ Standard geom. 100% trans, AF 0.95%. r $2.88 \AA, \varphi 64^{\circ}, \psi 140^{\circ}$, Pop 86%.

${ }^{\mathrm{e}}$ Standard geom. 85° dihedral, AF $1.81 \%, r 2.92 \AA, \varphi 90^{\circ}, \psi 140^{\circ}$, Pop $82 \%{ }^{\text {f }}$ Standard geom. 96% trans, AF $0.84 \%, r 2.84 \AA, \varphi 84^{\circ}, \psi 152^{\circ}$, Pop 34%.
Table 6 Conformer energies, dipole moments and solvation energies for the 2-substituted compounds

	Conformer	$\mathrm{E}_{\text {rel }} / \mathrm{kcal} \mathrm{mol}{ }^{-1}$		Dip. mom./D ${ }^{\text {a }}$	Solv. En./kcal mol ${ }^{-1}$		
		$\mathrm{HF}^{\text {b }}$	PCM ODEL		$\varepsilon=2.2$	4.8	21.2
1	trans	0.0	0.0	3.26	1.23	2.16	3.26
	cis	$2.6{ }^{\text {c }}$	2.4	4.42	2.27	4.00	6.02
2	trans	0.0		3.08	1.16	2.02	3.01
	cis	3.9		4.60	2.20	3.85	5.75
3	trans	0.0	0.0	2.16	1.08	1.83	2.68
	cis	0.9	0.1	3.38	1.61	2.78	4.11
4	tans	0.0	0.0	3.19	1.31	2.25	3.33
	cis	3.2	0.3	4.81	1.88	3.30	4.94
6	trans	0.0	0.0	2.23	0.97	1.64	2.38
	cis	1.4	0.0	3.53	1.14	1.96	2.89

${ }^{\text {a }}$ From CHARGE4. ${ }^{\mathrm{b}} 6$-31G basis set. ${ }^{\mathrm{c}} \mathrm{M}$ P2/6-31G*.

The ab initio geometries for this molecule had ring to ester dihedral angles of $36(42)^{\circ}$ and $25(32)^{\circ}$ for the trans and cis conformers respectively at the 6-31G (6-31G ${ }^{*}$) levels, but neither of these geometries gave an acceptable solution on varying the conformer populations or even varying both the populations and ring to ester dihedral angles. We note that the ab initio geometries for the methyl 2-fluorobenzoate (above) and for the esters in ref. 2 did not give good solutions and this suggests that the ester group geometry is not given very precisely by ab initio calculations at this level of MO theory. In contrast a PCM ODEL ${ }^{28}$ geometry with ring to ester dihedral angles of 48° (trans) and 47° (cis) gave a reasonable solution with an AF of 1.25 for 90% of the trans form.

In conclusion the LIS data for this molecule is fully explained on the basis of the two interconverting non-planar forms both with torsional angles of ca. 40° with ca. 5% of thecis form giving an energy difference of ca. $1.7 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ in favour of the trans form.

Table 5 gives the observed vs. calculated shifts for the 2-substituted compounds together with the lanthanide complexation parameters for the best solutions and it can be seen that in nearly all the cases an acceptable solution of the experimental shifts, including the fluorine LIS has been obtained. This demonstrates unequivocally that the fluorine LIS may be used with the same confidence as those of protons and carbon in any LIS study.

Discussion

It is instructive to compare the results obtained here for the conformer energies with both those of other investigations and
with ab initio and modelling calculations. These are often in different solvents and the theoretical calculations are of course for the vapour phase; thus there is the solvent dependence of the conformational equilibrium to consider. A Il the compounds investigated are highly polar and the distinct conformers have very different dipole moments and therefore their relative populations and energies will be very solvent dependent. The solvent dependence of the conformer energies is given quantitatively in Table 6 for those compounds interconverting between planar cis and trans forms using the M ODELS theory with the standard geometries and partial atomic charges calculated by the CHARGE routine. These programs have been given in detail el sewhere ${ }^{29,30}$ but we note that the CH A RG E4 calculated dipole moments for benzaldehyde, acetophenone, methyl benzoate, fluorobenzene and trifluoromethylbenzene are 3.07, 3.19, 2.06, 1.35 and 1.86 D , respectively, in good agreement with the observed values (3.2, 2.9, 1.9, 1.5 and 2.6 D), supporting the use of these solvation calculations which utilise the molecular dipole and quadrupole reaction fields for these compounds. We give in Table 6 the calculated solvation energy ($E_{\text {solv }}-E_{\text {vap }}$) for the cis and trans conformers for three values of the solvent dielectric constant, $\dagger 2.2,4.8$ and 21.2 corresponding to nonpolar solvents (cyclohexane, CCl_{4}), chloroform and acetone, respectively.
TheLIS results can now be considered together with those of other investigations using the data of Table 6. For example the LIS value of the energy difference ($\mathrm{E}_{\text {cis }}-\mathrm{E}_{\text {trans }}$) for 2fluorobenzaldehyde of $1.0 \mathrm{kcal} \mathrm{mol}^{-1}$ in CDCl_{3} solution together with the data of Table 6 predicts values of the energy

[^0]difference for the vapour, cyclohexane and acetone solutions of $2.8,1.7$ and $0.1 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. Schaefer and Wasylishen. ${ }^{9,12}$ determined the proportion of the cis and trans forms in $\mathrm{CS}_{2}-\mathrm{C}_{6} \mathrm{D}_{12}$ and acetone solvents as 96 and 86% trans corresponding to free energy differences of 1.8 and 1.1 kcal mol^{-1}, respectively, in generally good agreement with these predictions. Their calculated value of the vapour phase energy difference of $2.2 \mathrm{kcal} \mathrm{mol}^{-1}$ at the 6-31G level is also in good agreement with the value given in Table6 $\left(2.6 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ which was at a somewhat higher basis set level (M P2/6-31G*). This latter value is in excellent agreement with the value estimated from the solvent theory, thus in this molecule a complete description of the conformer energies in different media is obtained.
In the case of 2-fluoroacetophenone the equilibrium is so biased towards the trans form that a similar analysis is not possible without a definitive measure of the energy difference in one solvent. Thus a low-temperature NMR experiment was attempted using a $1: 1$ mixture of $\mathrm{CFCl}_{3}-\mathrm{CDCl}_{3}$ as solvent. The ${ }^{19} \mathrm{~F}$ signal coalesced at 163 K and at 135 K two signals separated by 3214 Hz corresponding to the distinct cis and trans forms were observed with the intensity $2.1: 97.9$. This gives the free energy difference ($\mathrm{E}_{\text {cis }}-\mathrm{E}_{\text {trans }}$) as $1.0 \mathrm{kcal} \mathrm{mol}^{-1}$ and the barrier to interconversion of $6.4 \mathrm{kcal} \mathrm{mol}^{-1}$, the latter slightly greater than that recorded for acetophenone ${ }^{31}$ of 5.35 kcal mol^{-1}. The dielectric constant of the solvent mixture at 135 K was estimated as ca. 12 and this with the data of Table 6 would predict values of the energy difference in the vapour, non-polar solvents, CDCl_{3} and acetone of 3.8, 2.8, 2.0 and 0.9 $\mathrm{kcal} \mathrm{mol}^{-1}$, respectively. The value for chloroform agrees with the LIS data (2% cis corresponds to $2.2 \mathrm{kcal} \mathrm{mol}^{-1}$) and the vapour state energy difference is in excellent agreement with the ab initio value (Table 6). Bock et al. ${ }^{14}$ interpreted their dipole moment measurements in CCl_{4} and benzene from INDO calculations as due to ca. 10% cis form, but closer examination of their results does not support these conclusions. The observed dipole moments in CCl_{4} and benzene solution are 2.76 and 2.78 D, respectively, but these values are less than the estimated dipole moment for the trans conformer (cf. Table 6, 3.08 D and ref. 14 quotes 2.81 D from group dipole moments and 2.90 D INDO calculations). Thus the dipole moment measurements are only consistent with essentially 100% trans form. This would be expected from the above results.
The LIS results for methyl 2 -fluorobenzoate when combined with the data of Table6 predict the conformer energy difference ($\mathrm{E}_{\text {cis }}-\mathrm{E}_{\text {trans }}$) as $1.4 \mathrm{kcal} \mathrm{mol}^{-1}$ in the vapour decreasing to 0.87 $\mathrm{kcal}^{-1} \mathrm{~mol}^{-1}$ in $\mathrm{CCl}_{4}, 0.45 \mathrm{kcal} \mathrm{mol}^{-1}$ in chloroform and ca. 0.0 $\mathrm{kcal} \mathrm{mol}^{-1}$ in acetone solution. There is little experimental data to test these predictions, but the observed dipole moment in benzene solution ($2.30 \mathrm{D}^{32}$) is consistent with ca. 15% cis form in general agreement with these predictions and the calculated ($6-31 \mathrm{G}$) energy difference of $0.9 \mathrm{kcal} \mathrm{mol}^{-1}$ (Table 6) is in excellent agreement with the above value. In contrast the energy difference given by PCM ODEL is somewhat low, and this may be due to the large electrostatic interactions in this molecule.
Similar comments can be made with respect to the conformer equilibrium in 2-trifluoromethylbenzaldehyde 4. The LIS results together with the data of Table 6 give the value of $E_{\text {cis }}$ $\mathrm{E}_{\text {trans }}$ as $2.4 \mathrm{kcal} \mathrm{mol}^{-1}$ in the vapour decreasing to 1.8 kcal mol^{-1} in $\mathrm{CCl}_{4}, 1.3$ in chloroform and 0.7 in acetone solution. The extrapolated vapour state energy difference is in fair agreement with the ab initio calculated value of $3.2 \mathrm{kcal} \mathrm{mol}^{-1}$ (Table 6) and again the PCM ODEL calculated energy difference ($0.3 \mathrm{kcal} \mathrm{mol}^{-1}$) is much too low.
The LIS results for the conformational equilibrium of methyl 2-trifluoromethylbenzoate 6 when taken with the data of Table 6 predict the conformer energy difference ($\mathrm{E}_{\text {cis }}-\mathrm{E}_{\text {trans }}$) as ca. 2.0 $\mathrm{kcal} \mathrm{mol}^{-1}$ in the vapour decreasing to $1.8 \mathrm{kcal} \mathrm{mol}^{-1}$ in CCl_{4}, $1.7 \mathrm{kcal} \mathrm{mol}^{-1}$ in chloroform and $1.5 \mathrm{kcal} \mathrm{mol}^{-1}$ in acetone
solution with both of the conformers non-planar with esterring torsional angles ca. 40°. Both the geometries and energies are in good agreement with the values obtained from the ab initio calculations ($1.4 \mathrm{kcal} \mathrm{mol}^{-1}$, Table 6) with ester-ring dihedral angles of ca. 30 and 40°. The PCM ODEL geometries are also in good agreement with the LIS results but the calculated value of the conformer energy is again too small.

The conformational equilibrium in 2-trifluoromethylacetophenone 5 presents a different problem, as the analysis of the LIS data by itself could not differentiate between one essentially orthogonal conformer and an equilibrium between two less twisted conformers. Supporting evidence for an essentially orthogonal conformation comes from a variety of sources. The calculated carbon chemical shifts for 5 obtained from the substituent chemical shifts (SCS) of trifluoromethylbenzene ${ }^{33}$ and acetophenone are in poor agreement with the experimental data, but the agreement is much improved when the SCS of the orthogonal 2,6 -dimethylacetophenone ${ }^{2}$ was used. The values of the complexation shifts ($\Delta \mathrm{D}$) for the carbon atoms in the planar 2-fluoroacetophenone $\mathbf{2}$ are significantly greater than those of 2-trifluoroacetophenone 5 especially for the 2 and 4 positions. It has been shown previously ${ }^{34}$ that the 13C $\Delta \mathrm{D}$ values are due to the aromatic π system redistributing the electron density on complexation and this again supports the non-planarity of 5. Finally, Bock et al. ${ }^{14}$ measured the dipole moment of 5 as 4.07 and 4.18 D in CCl_{4} and benzene solution, respectively, and noted that this was in very good agreement with that calculated by INDO for an orthogonal conformation.
The ab initio calculations for 5 provide further support for the essentially orthogonal conformation of this molecule. GAUSSIAN92 at the 6-31G* level optimised on two low energy conformations, a trans conformer with an acetyl-ring dihedral angle of 53.9° and a cis conformer with an acetyl-ring dihedral of 67.3°. These geometries were almost identical in energy (to $0.02 \mathrm{kcal} \mathrm{mol}^{-1}$) and this suggests that these solutions may be local minima on an almost flat potential surface with essentially no barrier between them. This was confirmed by optimising at the M P2/6-31G* level which gave only one optimised geometry starting from either the cis or the trans geometries which was for the cis form with a dihedral angle 58.5°. Bock et al. from INDO calculations suggested that the acetyl group executes a rocking motion of ca. 20° about the 90° out of plane conformation and this is in agreement with the above calculations. In conclusion the available evidence strongly suggests that $\mathbf{5}$ adopts an essentially orthogonal conformation both in the vapour and in solution.

Acknowledgements

We acknowledge ERASM US travel grants, a triennial Royal Society/CN R award, a Royal Society Study Visit Grant (R. J. A.) and an SERC CA SE A ward with ICI (C \& P) (M.E.). It is a pleasure to acknowledge the continuous support and assistance of Professor Carlo D ell' Erba and the technical assistance of M iss Paola A recco and M r M ark A. Warne.

References

1 R. J. A braham, T. A. D. Smith and W. A. Thomas, J. Chem. Soc., Perkin Trans. 2, 1996, 1949.
2 R. J. A braham, S. A ngiolini, M. Edgar and F. Sancassan, J. Chem. Soc., Perkin Trans. 2, 1995, 1973.
3 F. Sancassan, G. Petrillo and R. J. A braham, J. Chem. Soc., Perkin Trans. 2, 1995, 1965.
4 R . J. A braham, L. Pollock and F. Sancassan, J. Chem. Soc., Perkin Trans. 2, 1994, 2329.
5 R. J. A braham and I. S. H aworth, M agn. Reson. Chem., 1988, 26, 252.

6 R. J. A braham, H. A. Bergen and D. J. Chadwick, J. Chem. Soc., Perkin Trans. 2, 1983, 1161.
7 R. J. Abraham, D. J. Chadwick and F. Sancassan, Tetrahedron, 1982, 38, 1485; 3245.

8 J. K arabatos and F. M. Vane, J. A m. Chem. Soc., 1963, 85, 3886.
9 T. Schaefer and R. Wasylishen, C an. J. Chem. Soc., 1971, 49, 3216.
10 E. Bock and E. Tomchuk, Can. J. Chem., 1972, 50, 2890.
11 C. T. Aw, H.H. Huang and E. L. K. Tan, J. Chem. Soc., Perkin Trans. 2, 1972, 1638.
12 T. Scheaffer and R. Wasylishen, C an. J. Chem., 1990, 68, 339.
13 E. A. Bruce, G. L. D. Ritchie and A. J. Williams, A ust. J. Chem., 1974, 27, 1809.
14 E. Bock, R. Wasylishen, B. E. Gaboury and E. Tomchuk, Can. J. Chem., 1973, 51, 1906.

15 P. J. K rueger, Can. J. Chem., 1973, 51, 1363.
16 W. A dcock and S. Q. A. R izvi, A ust. J. Chem., 1973, 26, 2659.
17 W. A dcock, D. G. M athews and S. Q. A. R izvi, A ust. J. Chem., 1971, 24, 1829.
18 S. A ngiolini, Tesi di L aurea, U niversity of Genoa, 1994.
19 R. H. Contreras, C. G. Giribet, M. A. N atiello, J. Perez, I. D. R ae and J. A . W iegold, A ust. J. C hem., 1985, 38, 1779.
20 W. B. Smith, D. L. D eavenport and A. M . Ihrig, J. Am. C hem. Soc., 1972, 94, 1959.
21 R. J. Abraham, J. Fisher and P. Loftus, Introduction to NM R Spectroscopy, Wiley, N ew York, 1988.
22 H. O. K alinowski, S. Berger and S. Braun, C-13 N M R Spectroscopy, Wiley, N Y , 1988.
23 M. Edgar, Ph.D. Thesis, U niversity of Liverpool, 1994.
24 GAUSSIAN 94 (Revision B2), GAUSSIAN 92 (Revision F.4), M. J. Frisch, G. W. Trucks, M. H ead-G ordon, J. R. Cheeseman, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B.

Schlegel, M. A. Robb, E. S. Replogle, R. G omperts, J. L. A ndres, K. R aghavachari, J. S. Blinkley, C. G onzalez, R. L. M artin, D. J. Fox, D. J. D efrees, J. Baker, J. P. Stewart and J. A. Pople, G aussian Inc., Pittsburgh, PA, 1992.
25 W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, A b Initio M olecular Orbital Theory, Wiley, N ew York, 1988.
26 A. D omenicano and P. M urray-R ust, Tetrahedron Lett., 1979, 2283.
27 G. Schultz, I. H argittai and R. Seip, Z. N aturforsch, Teil A, 1981, 36, 669.

28 PCM ODEL. Serena Software, PO Box 3076, Bloomington, USA.
29 R. J. A braham, P. Leonard, T. A. D. Smith and W. A. Thomas, M agn. R eson. Chem., 1996, 34, 71.
30 R. J. A braham, G. H. G rant, I. S. H aworth and P. E. Smith, J. Comp. Aided. M ol. Des., 1991, 5, 21.
31 R. Benassi, L. Schenetti and F. Taddei, J. C hem. Soc., Perkin Trans. 2, 1979, 545.
32 A . L. M clellan, Tables of Experimental Dipole M oments, vol. 3, R ahara Enterprises, 1989.
33 H. O. K alinowski, S. Berger and S. Braun, C-13 N M R Spectroscopy, Wiley, N ew York, 1988, p. 313.
34 R. J. A braham, H. A. Berger, D. J. Chadwick and F. Sancassan, J. Chem. Soc., Chem. Commun., 1982, 998.

[^0]: † IU PAC name: relative permittivity.

